Search results for " Blow-up"

showing 4 items of 4 documents

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Numerical study of the transverse stability of the Peregrine solution

2020

We generalise a previously published approach based on a multi-domain spectral method on the whole real line in two ways: firstly, a fully explicit 4th order method for the time integration, based on a splitting scheme and an implicit Runge--Kutta method for the linear part, is presented. Secondly, the 1D code is combined with a Fourier spectral method in the transverse variable both for elliptic and hyperbolic NLS equations. As an example we study the transverse stability of the Peregrine solution, an exact solution to the one dimensional nonlinear Schr\"odinger (NLS) equation and thus a $y$-independent solution to the 2D NLS. It is shown that the Peregrine solution is unstable against all…

Mathematics::Analysis of PDEsFOS: Physical sciences010103 numerical & computational mathematics01 natural sciencesStability (probability)spectral approachdispersive blow-upperfectly matched layersymbols.namesakeMathematics - Analysis of PDEsnonlinear Schrodinger equations0103 physical sciencesFOS: MathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsReal lineVariable (mathematics)Physicsschrodinger-equationsNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsMathematical analysisNumerical Analysis (math.NA)Nonlinear systemTransverse planeExact solutions in general relativityFourier transformPeregrine solutionsymbolsExactly Solvable and Integrable Systems (nlin.SI)Spectral methodAnalysis of PDEs (math.AP)
researchProduct

Gradient estimates for the perfect conductivity problem in anisotropic media

2018

Abstract We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Finsler LaplacianApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Perfect conductorGradient blow-upConductivity01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsDimension (vector space)Settore MAT/05 - Analisi MatematicaElectric fieldSingular behaviorFOS: MathematicsMathematics (all)Primary: 35J25 35B44 35B50 Secondary: 35J62 78A48 58J600101 mathematicsPerfect conductorAnisotropyAnalysis of PDEs (math.AP)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct